
Software Automated Testing Guidelines

Malik Jahan Khan, Abdul Qadeer, Shafay Shamail
Department of Computer Science

Lahore University of Management Sciences (LUMS)
Lahore – Pakistan

jahan@lums.edu.pk, qadeer@lums.edu.pk, sshamail@lums.edu.pk

Abstract
Today software marketplace is competitive and
volatile like never before. Commercial software
complexity is increasing while time pressure to
release high quality software is also on the rise.
On one hand more defects are probable due to
increased software complexity while on the
other hand organizations cannot afford to let slip
many bugs in the field. In an effort to test an
application reliably, quickly and thoroughly,
automated software testing has emerged as a
viable solution to meet today’s challenges.
Although it is true that automated software
testing tools have become very powerful, it
should be kept in mind that proper induction and
utilization of tool is also nothing less than a
challenge. The primary focus of this paper is to
describe the common pitfalls and to recommend
guidelines to maximize the success probability
of tool induction.

1. Introduction
Most of today’s enterprise software is developed
using some variant of agile process like RUP [8].
The main idea of these processes is to break-up the
whole big project into many small manageable parts.
Each part is released to the client, while the
subsequent releases integrate with the older one.
These kinds of processes have their own benefits for
all the stakeholders.

Once a project is complete and the whole product
is fully deployed, the product goes into the
maintenance phase. Software in general and
enterprise applications in specific should not resist
changing. Due to this reason these days software are
built using pluggable components. Any component
could be changed anytime as the needs arise. There
could be numerous reasons for the change. We are
not discussing the reasons to initiate these changes
but one thing is obvious that in today’s volatile
world change is inevitable in the software.

In the above two scenarios, it is notable that
software testing team has to do lot of regression
testing. In scenario one, whenever a new iteration is
complete and it is merged with the previous release,
the inspection team has to thoroughly test the new
functionality while running the regression test on the

previous release, to make sure that integration is
smooth. In a big enterprise application the amount of
software, to be regression tested, increases. In
scenario two, mostly the client changes are too small
as compared to the size of the whole project. Again
the result is that once the change is implemented,
inspection team has a lot of testing work as far as
regression testing is concerned. Although software
organizations try to circumvent this situation by
intelligently analyzing and segregating software
parts which could potentially malfunction and hence
are good candidate of regression testing. But this
method has its potential risks.

Iterative development and changes initiated by
client are not the only situations when testing team
has lot of work to do. Different organizations
perform different testing cycles on their releases.
Similarly after each bug fix, localized regression is
performed. So the workload of inspection team is
ever increasing [5].

In this paper, we are not discussing that how an

organization could choose from its repertoire of
choices. Our focus is to present guidelines for an
organization, which has already decided to go for
automated testing. Automated software testing is
comparatively a newer approach of testing and lot of
myths surrounds this technique. In section 2, we
have discussed various testing alternatives.
Automated testing is one of them. In section 3, we
have discussed some benefits of automated testing.
In section 4, a few challenges of automation have
been discussed briefly. In rest of this paper, a
prescription or guidelines for an organization which
has already arrived at the decision to use automated
testing, have been suggested in detail.

2. Testing Alternatives
To meet a certain quality level, an organization
could have the following alternatives at its disposal:

2.1 Commit their inspection team to work
longer and harder

Our local software industry is notorious for longer
working hours. Ask any software engineer and he

will tell you his wish to keep a balance between his
personal life and work. It is very common for
organizations to commit their current human
resource to work longer and harder. But this could
only serve as a short term solution. There is always
the hazard that people will burn out and the turnover
rate could increase due to people leaving the
organization. In any case there is always high
probability of missed bugs, slipped into the field.

2.2 Increase the personnel in the inspection
team

The second option is to increase the testing
personnel in the inspection department.
Organizations need to conduct cost benefit analysis
before hiring new resources. Hiring experienced
resources is more costly while hiring fresh graduates
and training them in-house has its own cost and
risks. The direct costs are in terms of pays and
trainings. The in-direct cost is that the experienced
people have to devote their time to train new
resources. There is always some risk associated, if
new resources are put on work without giving them
enough time to understand the business domain of
the software.

2.3 Give more testing time to the same team
The third option is to give the same testing team
more time, so that they could test properly. But it
would be against the spirit of an agile process if
system testing is consuming a big chunk of the total
iteration time. Software business is very competitive
these days and organizations are looking ways to
expedite the software delivery. So this option is no
more an option for most of the organizations.

2.4 Do not do anything and rely on whatever
testing is possible in given time

Option four is again not viable. These days,
organizations have to be proactive to stay profitable
in the business. It should be noted that using this
option will result in decreased product quality by
slipping the bugs in the shipped release. Later, these
bugs would be reported by the client. These field
defects not only reduce customer satisfaction but
also put the organization under pressure as they now
have to take care of bigger backlog of field bugs
along with new release. So neglecting problems is
no solution because problems will keep on coming
back with more intensity.

2.5 Use automated testing
The fifth option is to use the automated testing.
Automated testing is a technique to test software by
means of a software tool, which records the user
behavior and later it could replay the recorded script
to mimic or simulate the human behavior. The

recorded script could be enhanced by means of
programming. There are different automation tools
for white box and black box testing. For example
Rational’s Purifier is used to detect any memory
leaks in C / C++ code. Mercury Interactive’s
WinRunner and Quick Test Professional (QTP) are
examples of GUI based functional black box testing.

3. Benefits of Automated Testing
Automated testing is a very powerful technique. But
to extract this power proper induction and usage of
tool is mandatory. Let us discuss the major benefits
of an automated testing tool.

3.1 Fast
Although automated testing tools mimic or simulate
a human user but they do it very quickly as
compared to a human being. In manual testing the
rate of test case execution varies due to many human
factors like a person is not equally productive the
whole day. On the other hand an automated tool
could run the script with the same high speed each
time, it is executed. It dramatically decreases the
testing time and hence utilizing the inspection time
to the fullest.

3.2 Reliable
In manual testing, there is always a chance of human
error. Automated testing tools, on the other hand,
run the scripts reliably each time. Exact same steps
are followed every time, the script is run.

3.3 Repeatable
The recorded script is repeatable. One can test how
a website or application reacts after repeated
execution of the same operations. Repeated
execution becomes very cumbersome in manual
testing.

3.4 Programmable
In almost every script, the recorded script is
enhanced by means of programming elements.
These programming elements enhance power of the
scripts. Now they can verify a larger range and
variety of functional requirements.

3.5 Comprehensive
One can build a suite of tests that covers every
feature in a website or application, hence, increasing
the code and data coverage. It is always desirable to
test the complete functionality of the software.

3.6 Reusable
One can reuse tests on different versions of a
website or application, even if the user-interface
changes.

4. Challenges of Automation
Though automated testing has a lot of benefit, but it
also has some associated challenges. Following list
includes some of the major challenges of
automation. Our suggested guidelines will be helpful
to face these challenges [3]:

i. Selection of Test Tool
ii. Customization of Tool

iii. Selection of Automation Level
iv. Development and Verification of Script
v. Implementation of Test Management System

5. Guidelines [2], [7], [1]
Many expectations are not completely met in
automated testing, but it really adds a lot of benefits,
even done by right people in right environment at
right time [6]. Cost/benefit analysis is very
important before going for automated testing.
Adapting automated testing for trivial and small
cases may be quite expensive. So, experienced
decision makers play an important role here.
Following suggested guidelines will be quite helpful
to adapt a successful automation.

5.1 Technical and Managerial Decision
Incorporating test automation could be a
technological decision at the beginning but
ultimately technical managers have to defend their
proposal in front of organizational management.
Different people have their own point of views about
different things. The gap between different people
could be wider depending on different
circumstances. So it is very important to discuss the
automation decision inside out to reach a common
understanding among stake holders. Time, cost and
resource requirements should be crystal clear among
the management levels.

5.2 Planning Automated Testing
Appropriate plan is required to introduce automated
testing in the organization. This plan should have
measurable milestones, shared with the upper
management as well.

5.3 Market Survey
Market survey is necessary. This market survey has
two dimensions. Firstly the organization should
thoroughly know the kind of software they want to
apply automation on. They should also get
automation success and experience of other
organizations, working in similar domain. Mostly
other organizations don’t provide such data. So
company has to invest either for a related consultant
or they need to buy the industry survey reports. It
should be noted that there are many automated
software testing vendors in the market and it may
not be feasible for the organization to try every
product to decide among the tool. It is highly

recommended that an organization try to buy a
comparison report of automated tools. In market,
every vendor claims that its tool is easy to use,
friendly, and reliable and your non-technical people
can easily learn and use it [9]. But you need to
evaluate after a comprehensive survey and then
select the really stable tool.

5.4 Proof of Concept
Once the tool choice is narrowed down (not more
than two), the next task is proof of concept. It is
very important to make a dedicated team to work on
proof of concept. Their task is to verify the tool
capabilities by having first hands on experience on
the organization software. Few automated software
are available for limited time trial version. Some
times, organizations need to buy at least one license
for this purpose. This phase is very crucial because
company decision greatly depends on the results of
this study. So it goes without saying that this group
has the responsibility to appropriately selecting the
portions of software to be tested using the tool,
which are representative of whole application.

5.5 Trained People
To conduct proof of concept, company need some
people who know automated testing. So company
could either hire people or could train their resources
for automated testing. To train people could be a
costly option, but to conduct proof of concept,
company needs people who are with the
organization for quite some time and they
understand the company software domain well.

5.6 Automated Test Script
Writing automated test script is just like any other
development activity. The difference is that the
requirement gathering and high level design is not
needed. Design, coding and testing of automated
test script code is very important. Don’t
underestimate this point because consider how
sarcastic it would be that an organization inducted an
automation tool to increase their testing efficiency
but they ended up with more bugs slipped into the
field because the automated script wasn’t able to
detect it due to a bug in its script. This is a major
cost of test automation. Again the test script writer
isn’t the best person to test it.

5.7 Properties of Test Script
Test script needs all the qualities of a good software
like maintainability, proper documentation etc. This
is because if test scripts could not be changed
quickly and easily, then they are almost useless. All
this needs experienced test script writers. It is
recommended that the organizations identify the
portions of the program, which are least probable to
change and yet important for regression test. If they

couldn’t find such functionality and they don’t have
experienced test script writers, it is recommended
not to do test automation at this point.

5.8 Significance of Test Case
It is a myth that automated testing can catch more
bugs as compared to manual testing. It is necessary
to understand that an automated test script could
only be as efficient in finding bugs as the original
test case. Test script is a translation of a test case. If
a test case skips something, the automated test script
will miss it.

5.9 Manual Test Cases
For test automation, detailed test script along with
test data is necessary. Some times, a level of
abstraction hides the detail of test case because the
testing engineer has the domain knowledge. If
automated test script writer is someone else, the
proper detail is necessary. If the organization could
train all of their test team for automation, so that
they could write the test script for their own test
cases, that is the ideal case. If it is not possible and
there are only few people who know automation
well and they have to automate everyone’s test cases
then it is recommended to increase the quality and
detail of manual test cases. The automated test script
should be tested by the person, who originally wrote
the test case.

5.10 Significance of Automation Tool
Give your automation tool and yourself sufficient
time before judging its usefulness. Although it is
very important to quantitatively measure the
efficiency due to test tool but the conclusions should
be made after sufficient time. The organization
should rely on quick tutorial based tool learning
approaches. Vendors provide very good tutorials
with tools. The best bet is to put the people to write
the real test script after learning most important and
basic features. Advanced features could be learned
as needed. It decreases training cost. The automated
test scripts may not have all those nice features like
maintainability in the beginning, but after some
time, organization would have valuable work force.
One important factor is to hire people in inspection
team with right qualification, so that they have
programming background. This thing really
increases the speed of script coding.

5.11 Requirements Change
Widespread application change could make all the
test scripts useless and they may need to change. If
some part of software is highly probable to be
changed, it shouldn’t be automated.

5.12 Incorporating Intelligence
Automated testing tools can not mimic human
intelligence. When a test engineer manually executes
the steps of a test case, s/he could intelligently
change his/her actions as needed. Incorporating
such customization in the script is very difficult, but
not impossible.

5.13 Exhaustive Testing
Exhaustive testing is yet not possible. Although
code and data coverage is greatly increased, but yet
testing each branch of code with each permutation of
data is not possible.

5.14 Time to Run Automated Test Tool
In GUI-based automated test tools, it is difficult to
start writing scripts if code is yet not ready. That
means, it may not be possible to use the tool from
the very beginning of a project. The best situation is
when first release is manually tested and deployed.
Then while release two is under development, the
automated scripts of release one should be written
for the purposes of regression testing.

5.15 Testability
Testability becomes one of the most important traits
after the induction of a costly tool (The cost of a
sophisticated tool is around $4000 per license).
Testability is the quality of a software that how easy
or difficult it is to test the software. Many third party
components may not be recognized by the tool. In
these conditions organization should provide the
developers with a list of GUI gadgets, which could
be recognized by the automation tool.

5.16 Automation Success
The Software Test Life Cycle (STLC) is the
roadmap to automation success. STLC parallels the
Software Development Life Cycle (SDLC), and
includes phases planning, analysis, design,
construction, testing (initial test cycles), bug fixes
and re-testing (final testing and implementation) [4].
Lack of planning earlier is one of the biggest reasons
of automation failures. A lot of automation work
should be done before the software is available.
“Start Early” is the big lesson, practitioners
recommend for successful automation [4].

5.17 Part of Culture
Make the automation part of culture. Though, it
can’t be guaranteed to experience a successful
automation in the first go, however, “experience and
learn” leads to successful adaptation of this
phenomenon. Finally, this success will make
automation part of the organizational culture. The

complex and hardly controllable future projects need
a pre-existing culture of automation.

The computer which runs automated scripts may
not be used in parallel for other activities. It is a
misconception that a test engineer will manually test
application while the tool is running its script in the
background. When the automated tool mimics the
user behavior by clicking the gadgets, the operating
system thinks that it’s the active window and hence
brings that window in the foreground. That means
that a test engineer may not do something else, while
test script is running in the background. So either
separate machines are required or test engineer may
need to observe running script. Some times, un-
attended scripts are run at the close of business to
run over night. But again writing unattended scripts
is more difficult than ordinary scripts.

6. Conclusions
Every organization is unique and has its own needs.
It is difficult to recommend “one size fit all”
solution. But following the guidelines given in this
paper increases the probability of success and could
make the automation experience satisfactory for all
the stakeholders. These guidelines might prove to be
quite effective when organizations customize them
according to their own business architecture,
available human resources, nature of the project,
level of quality needed and budget constraints.

Acknowledgements
We are highly thankful to Tauqeer Hussain, Tariq
Fayyaz and Zeeshan Ali Rana for their valuable help
and guidance towards completing this work.

References
[1] AutoTester Inc. Best practices guide to

automated testing, A document of basic
description of Automated Testing,
http://www.autotester.com/content/pdfs/BPG-
pdf.PDF, 2002.

[2] Dustin, E. Lessons in test automation, Software
Testing & Quality Engineering,
September/October 1999 pp. 16-21.

[3] Hughes Software Systems Ltd. Test Automation,
http://www.hssworld.com/whitepapers/whitepap
er_pdf/test_automation.pdf, December 2002.

[4] Isenberg, H. M. The Practical Organization of
Automated Software Testing,
http://www.automated-
testing.com/PATfinal.htm, 2005.

[5] Kan, S. H. Metrics and Models in Software
Engineering, Second Edition, Pearson
Education, 2002.

[6] Kerry, Automated Software Testing – A
perspective,
http://www.testingstuff.com/autotest.pdf

[7] Pettichord, B. Seven steps to test automation
success, http://www.io.com/~wazmo/papers/
seven_steps.html, June 2001.

[8] Pressman, R. S. Software Engineering, A
Practitioner’s Approach, Sixth Edition,
McGraw Hill Education, 2005.

[9] Zambelich, K. Totally Data-Driven Automated
Testing, A White Paper of Automated Testing
Specialists Inc., http://www.sqa-test.com/
w_paper1.html, 1998.

